Search results

1 – 4 of 4
Article
Publication date: 20 September 2022

Jun Zhan, Ziyan Zhang, Shun Zhang, Jiabao Zhao and Fuhong Wang

Despite servitization being widely regarded as an essential catalyst to improve manufacturing firms' survival and competitiveness, how to attain servitization remains debatable…

1241

Abstract

Purpose

Despite servitization being widely regarded as an essential catalyst to improve manufacturing firms' survival and competitiveness, how to attain servitization remains debatable. The primary objective of this research is to explore whether or not, how, and when the dynamic capabilities affect servitization in the digital economy background. This research investigates the relationships between servitization and dynamic capabilities by incorporating firm ownership, firm lifecycle stage, digital economy level and environmental uncertainty as contingency factors in the research framework.

Design/methodology/approach

This research develops and verifies a conceptual framework for manufacturing servitization by employing the fuzzy-set qualitative comparative analysis (fsQCA) in analyzing the secondary longitudinal data from 148 China-listed manufacturing firms involved in servitization from 2015 to 2020.

Findings

The analytical results of fsQCA identify several configurational solutions for the success of manufacturing servitization. Each factor can be an enabler for servitization success despite none of the factors discovered as an absolute condition. Manufacturing servitization success within the digital economy depends on the interactions between dynamic capabilities and contingency factors such as digital economy level, environmental uncertainty, firm ownership, and lifecycle stage.

Research limitations/implications

All of the construct's measurements in this research adopt secondary data, and further investigation calls for primary data (e.g. survey) for higher validity.

Originality/value

This research extends the current view of servitization by proposing an integrative conceptual framework, allowing manufacturing servitization to be examined more pertinently and comprehensively. Second, the research is an initial attempt that adopts fsQCA in servitization studies. The study sheds light on the mechanisms of attaining servitization by revealing the importance of dynamic capabilities and their interactions with the contingency factors. Third, the research extends the application scopes of dynamic capability theory, firm lifecycle theory, contingency theory, and institutional theory. Fourth, the research findings enrich the understanding of servitization in the digital economy and give business practitioners insights on leveraging dynamic capabilities in different conditions to attain successful servitization under the current circumstances.

Details

Industrial Management & Data Systems, vol. 123 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 7 December 2021

Jiuhong Yu, Mengfei Wang, Yu J.H. and Seyedeh Maryam Arefzadeh

This paper aims to offer a hybrid genetic algorithm and the ant colony optimization (GA-ACO) algorithm for task mapping and resource management. The paper aims to reduce the…

Abstract

Purpose

This paper aims to offer a hybrid genetic algorithm and the ant colony optimization (GA-ACO) algorithm for task mapping and resource management. The paper aims to reduce the makespan and total response time in fog computing- medical cyber-physical system (FC-MCPS).

Design/methodology/approach

Swift progress in today’s medical technologies has resulted in a new kind of health-care tool and therapy techniques like the MCPS. The MCPS is a smart and reliable mechanism of entrenched clinical equipment applied to check and manage the patients’ physiological condition. However, the extensive-delay connections among cloud data centers and medical devices are so problematic. FC has been introduced to handle these problems. It includes a group of near-user edge tools named fog points that are collaborating until executing the processing tasks, such as running applications, reducing the utilization of a momentous bulk of data and distributing the messages. Task mapping is a challenging problem for managing fog-based MCPS. As mapping is an non-deterministic pol ynomial-time-hard optimization issue, this paper has proposed a procedure depending on the hybrid GA-ACO to solve this problem in FC-MCPS. ACO and GA, that is applied in their standard formulation and combined as hybrid meta-heuristics to solve the problem. As such ACO-GA is a hybrid meta-heuristic using ACO as the main approach and GA as the local search. GA-ACO is a memetic algorithm using GA as the main approach and ACO as local search.

Findings

MATLAB is used to simulate the proposed method and compare it to the ACO and MACO algorithms. The experimental results have validated the improvement in makespan, which makes the method a suitable one for use in medical and real-time systems.

Research limitations/implications

The proposed method can achieve task mapping in FC-MCPS by attaining high efficiency, which is very significant in practice.

Practical implications

The proposed approach can achieve the goal of task scheduling in FC-MCPS by attaining the highest total computational efficiency, which is very significant in practice.

Originality/value

This research proposes a GA-ACO algorithm to solve the task mapping in FC-MCPS. It is the most significant originality of the paper.

Details

Circuit World, vol. 49 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 19 June 2020

Mhamed Zineddine

Trust is one of the main pillars of many communication and interaction domains. Computing is no exception. Fog computing (FC) has emerged as mitigation of several cloud computing…

Abstract

Purpose

Trust is one of the main pillars of many communication and interaction domains. Computing is no exception. Fog computing (FC) has emerged as mitigation of several cloud computing limitations. However, selecting a trustworthy node from the fog network still presents serious challenges. This paper aims to propose an algorithm intended to mitigate the trust and the security issues related to selecting a node of a fog network.

Design/methodology/approach

The proposed model/algorithm is based on two main concepts, namely, machine learning using fuzzy neural networks (FNNs) and the weighted weakest link (WWL) algorithm. The crux of the proposed model is to be trained, validated and used to classify the fog nodes according to their trust scores. A total of 2,482 certified computing products, in addition to a set of nodes composed of multiple items, are used to train, validate and test the proposed model. A scenario including nodes composed of multiple computing items is designed for applying and evaluating the performance of the proposed model/algorithm.

Findings

The results show a well-performing trust model with an accuracy of 0.9996. Thus, the end-users of FC services adopting the proposed approach could be more confident when selecting elected fog nodes. The trained, validated and tested model was able to classify the nodes according to their trust level. The proposed model is a novel approach to fog nodes selection in a fog network.

Research limitations/implications

Certainly, all data could be collected, however, some features are very difficult to have their scores. Available techniques such as regression analysis and the use of the experts have their own limitations. Experts might be subjective, even though the author used the fuzzy group decision-making model to mitigate the subjectivity effect. A methodical evaluation by specialized bodies such as the security certification process is paramount to mitigate these issues. The author recommends the repetition of the same study when data form such bodies is available.

Originality/value

The novel combination of FNN and WWL in a trust model mitigates uncertainty, subjectivity and enables the trust classification of complex FC nodes. Furthermore, the combination also allowed the classification of fog nodes composed of diverse computing items, which is not possible without the WWL. The proposed algorithm will provide the required intelligence for end-users (devices) to make sound decisions when requesting fog services.

Details

Information & Computer Security, vol. 28 no. 5
Type: Research Article
ISSN: 2056-4961

Keywords

Article
Publication date: 13 March 2017

Ahmad Sarani Ali Abadi and Saeed Balochian

The purpose of this paper is to address the problem of control in a typical chaotic power system. Chaotic oscillations cannot only extremely endanger the stabilization of the…

Abstract

Purpose

The purpose of this paper is to address the problem of control in a typical chaotic power system. Chaotic oscillations cannot only extremely endanger the stabilization of the power system but they can also not be controlled by adding the traditional controllers. So, the sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties. Closed-loop stability is proved using the Lyapunov stability theory. The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of the power system, eliminating control signal chattering and also show less control effort in comparison with the methods considered in previous literatures.

Design/methodology/approach

The sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties. Closed-loop stability is proved using the Lyapunov stability theory.

Findings

Closed-loop stability is proved using the Lyapunov stability theory. The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of power system, eliminating control signal chattering and also less control effort in comparison with the methods considered in previous literatures.

Originality/value

Main contributions of the paper are as follows: the chaotic behavior of power systems with two uncertainty parameters and tracking reference signal for the control of generator angle and the controller signal are discussed; designing sliding mode control based on a fuzzy supervisor in order to practically implement for the first time; while the generator speed is constant, the proposed controller will enable the power system to go in any desired trajectory for generator angle at first time; stability of the closed-loop sliding mode control based on the fuzzy supervisor system is proved using the Lyapunov stability theory; simulation of the proposed controller shows that the chattering is low control signal.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 4 of 4